Background and Objective: This study evaluated whether the biochemical changes associated with type 2 diabetes modulate the expression of interleukin-1β, interleukin-6, interleukin-8, and interferon-γ in sites with chronic periodontitis.

Material and Methods: Biopsies were harvested and divided into three groups: group 1, systemically and periodontally healthy subjects (n = 10); group 2, systemically healthy subjects with moderate-to-severe chronic periodontitis (probing depth > 6 mm) (n = 20); and group 3, type 2 diabetic subjects with periodontitis (n = 20). Cytokine levels were assessed in the gingival tissues by enzyme-linked immunosorbent assay analysis.

Results: Data analysis demonstrated that the interleukin-1β, interleukin-6, interleukin-8, and interferon-γ levels were higher in the presence of periodontal inflammation than in the absence of inflammation, regardless of systemic status. The interleukin-1β and interleukin-6 levels were higher in diabetic subjects (group 3) than in systemically healthy patients with comparable types of periodontitis (group 2). No difference was observed for the interleukin-8 and interferon-γ levels between groups 2 and 3.

Conclusion: Within the limits of this study, it was concluded that type 2 diabetes was associated with increased expression of interleukin-1β and interleukin-6 in periodontally inflamed tissues of diabetic patients, relative to nondiabetic subjects, and that such overexpression may be involved in the mechanisms by which type 2 diabetes enhances periodontal destruction.
explain the greater incidence and severity of periodontal disease in diabetic subjects (4–6). These include polymorphonuclear leukocyte dysfunction (7,8), vascular changes, altered collagen and glycosaminoglycan synthesis, deregulated cytokine production (9), and the formation of advanced glycation end-products (10). Advanced glycation end-products, through their receptors, induce the expression of pro-inflammatory cytokines, such as prostaglandin E2, interleukin-1β, interleukin-6, and tumor necrosis factor-α (11,12). Therefore, advanced glycation end-product–their receptors interaction amplifies the magnitude of cytokine expression and response, which may further amplify the progression and severity of periodontitis. Even though some studies have attempted to describe the role of diabetes mellitus in periodontal pathological processes, few have examined the presence of local expression of inflammatory factors in the periodontal tissue of type 2 diabetic patients. Therefore, the aim of this study was to evaluate whether type 2 diabetes mellitus is associated with altered expression of interleukin-1β, interleukin-6, interleukin-8, and interferon-γ in sites with moderate-to-severe chronic periodontitis.

Material and methods

Study population

This study was approved by the Institutional Review Board of the University of Campinas School of Dentistry. All subjects were submitted to anamnesis and to clinical and periodontal examination (Table 1). Patients with moderate-to-severe chronic periodontitis were defined as having multiple sites (at least eight) with a probing depth of ≥ 6 mm that was associated with bleeding on probing, and with bone loss as determined by radiographs. Exclusion criteria included any systemic disorder that would require antibiotic prophylaxis or would affect the periodontitis condition, except for diabetes, and patients who received scaling and root planing and/or used systemic or subgingival antimicrobials or anti-inflammatory medication within 6 mo prior to baseline examination. Only patients who had been diagnosed with type 2 diabetes mellitus for at least 10 years were classified as diabetic. All patients were nonsmoking, and female patients were not pregnant, lactating or using any method of birth control.

Experimental design and biopsy collection

Prior to biopsy collection, selected sites were dichotomously assessed for supragingival plaque and bleeding on probing. In addition, probing depth and attachment loss measurements were also obtained from sample sites (Table 2). Gingival biopsies were harvested from single teeth from subjects undergoing periodontal surgery for disease-related and nondisease-related reasons (e.g. esthetics). Following block anesthesia, tissues on tooth surfaces where periodontal pockets were evaluated were incised to include the entire soft tissue walls of the pockets to be investigated. The entire pocket and junctional epithelia, as well as the adjacent connective tissue, were carefully removed with a surgical blade. Biopsies were restricted to one or more sites around a randomly selected tooth and divided into three different groups according to their periodontal and systemic status, as follows.

| Group 1 — Systemically and periodontally healthy subjects. These subjects had a high standard of oral hygiene with no bleeding on probing, and a probing depth of ≤ 3 mm in the selected sites (n = 10). |
| Group 2 — Subjects who were systemically healthy and clinically diagnosed with moderate-to-severe chronic periodontitis (e.g. probing depth ≥ 6 mm and bleeding on probing) (n = 20). |
| Group 3 — Type 2 diabetic subjects (actual fasting serum glucose levels < 120 mg/dL) clinically diagnosed with moderate-to-severe chronic periodontitis (n = 20). |

Enzyme-linked immunoabsorbent assay (ELISA)

ELISA was performed as detailed in a previous report (13). Briefly, biopsies were stored at −20°C and homogenized in a solution of phosphate-buffered saline containing 0.4 m NaCl, 0.05% Tween 20, 0.5% bovine serum albumin, 0.1 mM phenylmethylsulfonyl fluoride, 0.1 mM benzotonic chloride, 10 mM EDTA, and 20 KIU/mL aprotinin (Sigma Chemical Co., St Louis, MO, USA). The samples were centrifuged (12,350 g, 15 min, 4°C) and the supernatant was used to evaluate the concentrations of interleukin-1α, interleukin-

Table 1. Demographic clinical characteristics of the study populations for the three experimental groups (mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (n = 10)</th>
<th>Group 2 (n = 20)</th>
<th>Group 3 (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>39.57 ± 2.85</td>
<td>37.50 ± 4.11</td>
<td>40.86 ± 3.37</td>
</tr>
<tr>
<td>% Male subjects</td>
<td>40.00</td>
<td>33.33</td>
<td>40.00</td>
</tr>
<tr>
<td>Probing depth (mm)</td>
<td>1.95 ± 0.45</td>
<td>7.65 ± 0.57</td>
<td>7.69 ± 0.43</td>
</tr>
<tr>
<td>Glycemic level (mg/dL)</td>
<td>11.0 ± 5.99</td>
<td>11.0 ± 5.99</td>
<td>11.0 ± 5.99</td>
</tr>
<tr>
<td>Duration of diabetes (years)</td>
<td>–</td>
<td>–</td>
<td>14.06 ± 5.52</td>
</tr>
</tbody>
</table>

Table 2. Mean values (± SD) of clinical parameters of sampling sites for the three experimental groups

<table>
<thead>
<tr>
<th></th>
<th>Group 1 (n = 10)</th>
<th>Group 2 (n = 20)</th>
<th>Group 3 (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probing depth (mm)</td>
<td>1.35 ± 0.90</td>
<td>7.60 ± 0.86</td>
<td>7.45 ± 1.42</td>
</tr>
<tr>
<td>Attachment loss (mm)</td>
<td>1.25 ± 0.62</td>
<td>8.50 ± 0.92</td>
<td>8.15 ± 1.47</td>
</tr>
<tr>
<td>Plaque (%)</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Bleeding on probing (%)</td>
<td>0</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
6, interleukin-8, and interferon-γ in the gingival tissues. Polystyrene high-binding 96-well microtiter plates (Nunc-Immuno Plate; Maxisorp, Rochester, NY, USA) were coated with capture antibody, polyclonal rabbit anti-interleukin-1α (3 μg/mL; Pharmingen, San Diego, CA, USA), anti-interleukin-6 (1 μg/mL; Pharmingen), anti-interferon-γ (1 μg/mL; Pharmingen), and anti-interleukin-8 (1 μg/mL; Pharmingen), diluted in phosphate-buffered saline coating buffer. After overnight incubation at 4°C, the plates were washed (as in subsequent steps) with phosphate-buffered saline containing 0.05% Tween 20 and 0.4 M NaCl and then incubated in dilution buffer (phosphate-buffered saline containing 1.0% bovine serum albumin; 100 μL per well) for 2 h at room temperature to block nonspecific binding. After washing, samples (100 μL per well), or the serially diluted standards of interleukin-1β (5000 pg/mL; Pharmingen), interleukin-6 (2000 pg/mL; Pharmingen), interferon-γ (2000 pg/mL; Pharmingen) or interleukin-8 (2000 pg/mL; Pharmingen), were added to the plates and incubated overnight at 4°C. After washing the plates, 100 μL of biotinylated sheep polyclonal antihuman interleukin-1β (0.2 μg/mL; Pharmingen), interleukin-6 (1 μg/mL; Pharmingen), interferon-γ (1 μg/mL; Pharmingen) or interleukin-8 (1 μg/mL; Pharmingen) was added to each well and the plates were incubated for 1 h at room temperature. Color was developed by the use of peroxidase-conjugated streptavidin (1:200; 100 μL per well) (DAKO Corp., Carpinteria, CA, USA) for 30 min and, after washing, the chromogen, o-phenylenediamine-2HCl (Sigma) was incubated for 15 min. The reactions were quenched with 150 μL of 1.0 M sulphuric acid. The absorbance of each well was read in a microplate spectrophotometer at 490 nm, and the concentration of cytokines was calculated from a standard curve and expressed as pg/mg of tissue.

Statistical analysis

Data from ELISA analysis were averaged and an intergroup comparison was performed by one-way analysis of variance (α = 0.05). If statistical difference was detected, a pairwise multiple comparison test (Bonferroni t-test) was used to identify the difference among the groups.

Results

Clinical observations

The mean values (± standard deviation) for the clinical parameters in the selected population, demographic data, and glycemic data in diabetic and nondiabetic subjects, and clinical parameters of sampling sites for all the three experimental groups are given in Tables 1 and 2, respectively. With respect to the sampling sites, group 1 showed no signs of inflammation (e.g. bleeding on probing) and the absence of dental biofilm, whereas for both groups 2 and 3, inflammation and dental biofilm were always present. In addition, groups 2 and 3 showed a comparable type of periodontitis with respect to its type (chronic periodontitis) and severity (moderate to severe probing depth ≥ 6 mm).

ELISA analysis

The mean concentrations and standard deviations of interleukin-1β, interleukin-6, interleukin-8, and interferon-γ (pg/mg of tissue), as determined by enzyme-linked immunosorbent assay, in gingival biopsies harvested from healthy periodontal sites (group 1), from systemically healthy subjects with moderate-to-severe chronic periodontitis (group 2), and from sites with comparable types of periodontitis in type 2 diabetic subjects (group 3). Different letters indicate statistical differences, as determined by an intergroup analysis using one-way analysis of variance (α = 0.05), followed by a pairwise multiple comparison test (Bonferroni t-test), to identify the difference among the groups. IL, interleukin; IFN, interferon.

Discussion

The findings of the current study demonstrate that elevated levels of interleukin-1β, interleukin-6, interleukin-8, and interferon-γ are more significantly associated with sites showing periodontal inflammation in comparison with noninflamed sites. In addition, data analyses suggest that an
overproduction of the pro-inflammatory cytokines interleukin-1β and interleukin-6 in the local area may be involved in the type 2 diabetes modulation of periodontal destruction induced by the dental biofilm, whereas interleukin-8 and interferon-γ may not be directly involved. Interleukin-1β is a bone-resorptive cytokine that also mediates soft-tissue destruction by stimulating the production of prostaglandin E and collagenase (14). It has been previously demonstrated that human gingival crevicular fluid from diabetic patients may contain higher levels of both prostaglandin E2 and interleukin-1β than the gingival crevicular fluid from healthy subjects (11). Furthermore, monocytes isolated from periodontal sites in type 2 diabetic subjects from diabetic patients may be associated with severe, but not with moderate, periodontitis (29). The results of the present study demonstrated that both interleukin-8 and interferon-γ levels were higher in the inflamed vs. noninflamed tissues, regardless of the diabetic state. Therefore, based on these data, although interleukin-8 and interferon-γ locally delivered in the gingival tissues play a relevant role in the pathogenesis of periodontal disease, they may not be directly involved in the mechanisms by which periodontal bone destruction is modulated in type 2 diabetic patients. In conclusion, within the limits of the present study, it may be concluded that overexpression of interleukin-1β and interleukin-6 play a relevant role in the increased periodontal breakdown seen in individuals with type 2 diabetes mellitus. If these findings are confirmed by other studies, they may be helpful in designing more mechanistic approaches in order to minimize the negative effect of type 2 diabetes mellitus on periodontal destruction.

Interleukin-8 plays a key role in the host defense mechanism in inflammatory diseases, including periodontitis, through neutrophil or nonleukocytic cell chemotaxation and activation (24–26). Interferon-γ is another key inflammatory mediator that is involved in T-cell-mediated activation of macrophages and bone remodeling (21,27,28). Furthermore, a recent clinical study suggested that the high level of expression of interferon-γ in salivary samples from type 2 diabetic patients may be associated with severe, but not with moderate, periodontitis (29). The results of the present study demonstrated that both interleukin-8 and interferon-γ levels were higher in the inflamed vs. noninflamed tissues, regardless of the diabetic state. Therefore, based on these data, although interleukin-8 and interferon-γ locally delivered in the gingival tissues play a relevant role in the pathogenesis of periodontal disease, they may not be directly involved in the mechanisms by which periodontal bone destruction is modulated in type 2 diabetic patients. In conclusion, within the limits of the present study, it may be concluded that overexpression of interleukin-1β and interleukin-6 play a relevant role in the increased periodontal breakdown seen in individuals with type 2 diabetes mellitus. If these findings are confirmed by other studies, they may be helpful in designing more mechanistic approaches in order to minimize the negative effect of type 2 diabetes mellitus on periodontal destruction.

Acknowledgements

This project was supported by the São Paulo State Research Foundation (04/ 02436-1), Dr Nociti Jr was supported by the National Council of Research (304464/03-1).

References