A SYSTEMATIC REVIEW AND META-ANALYSIS OF EPIDEMIOLOGIC OBSERVATIONAL EVIDENCE ON GLYCAEMIC CONTROL AND RISK OF DEVELOPING DIABETES IN HEALTHY PATIENTS

Revisione sistematica e metanalisi dell’evidenza epidemiologica-osservazionale sul controllo glicemico ed il rischio di sviluppare il diabete in pazienti sani

Filippo Graziani¹,², Stefano Gennai¹,², Luca Lillo¹,², Morena Petrini¹,²

1. Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
2. Sub-Unit of Periodontology, Halitosis and Periodontal Medicine, University Hospital of Pisa, Pisa, Italy

Running title: Effect of periodontitis on glycaemic control

Key words: Periodontal disease, diabetes, epidemiology

Abstract

Aim: to evaluate the impact of periodontal disease on glycaemic control, and new diabetes development in healthy patients.

Methods: Observational studies (cross-sectional, case-control and cohort design) on periodontitis effect on glycaemic control, published until January 2017, were identified through electronic databases and hand-searched journals. Findings were summarized by evidence tables, using PRISMA statement. Quality of the included studies was evaluated through the Newcastle Ottawa scale. Meta-analysis was performed with random approach when feasible.

Results: healthy subjects with periodontitis show a worse glycaemic control: 0.29 % of Hb1AC (0.20-0.37 %, 95% C.I. p<0.01) and a higher risk of 29% (1.11-1.46, 95% CI , p<0.0001) of developing diabetes.

Conclusions: Periodontitis has a significant impact on diabetes incidence and glycaemic control in healthy patients. Nevertheless, additional evidence is needed to further re-enforce such knowledge.

Introduction

Diabetes and periodontitis are two common chronic diseases that affect people worldwide.

The recent report published by WHO in 2016 has stated that in 2014 about 422 million adults were living with diabetes (World Health Organization 2016); this data is very alarming because the global prevalence of this condition increased from 4.7% in 1980 to 8.5% in 2014, in the adult population. Another important aspect is that diabetes increment was particularly marked in low- and middle-income countries than in high-income ones, as a consequence of such risk factors increment, like obesity and sedentary behaviours (Lear et al. 2014). In 2012 diabetes and poor
Glycaemic control have caused globally about 3.7 million of deaths, affecting the risks of cardiovascular and other diseases and 43% of these occurred in people younger than 70 years old.

Periodontitis affects about the 50 % of word population, with severe forms incidence ranging between 5-10% (Petersen et al. 2005, Eke & Dye 2009, Mattila et al. 2010, Hu et al. 2011).

Currently there is an increasing interest in the literature in links between periodontitis and inflammatory systemic diseases, like hypertension, diabetes and cerebro-cardiovascular conditions

(Ylöstalo et al. 2010, Lockhart et al. 2012, Borgnakke et al. 2013). The persistence of bacterial biofilm in periodontal sites and the consequent inflammatory reaction, could lead to a cumulative inflammatory burden in the host, predisposing the patients to the development of other systemic chronic conditions. Loos et al. have shown that people affected by periodontitis are characterized by altered total numbers of leukocytes and plasma levels of C-reactive protein (CRP)(Loos et al. 2000).

The aim of this work is to perform a systematic review and meta-analysis of epidemiologic observational evidence on glycaemic control and risk of developing diabetes in healthy patients

Materials and Methods

Protocol development and eligibility criteria

The present study aimed to review observational studies published until January 2017 that analysed the effect of periodontitis on glycaemic control. In particular we have performed an update of the systematic review published by Borgnakke in 2013 and that have analysed article published until the January 2013 (Borgnakke et al. 2013).

A detailed protocol was designed according to the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analyses) statement (Moher et al. 2009, Liberati et al. 2009). The systematic review was designed to answer the following focused questions:

1. Do people with not known diabetes, who have poorer periodontal health, have poorer glycaemic control than those with better periodontal health?

2. Do people without known diabetes, who have poorer periodontal health, have greater risk for developing (incident) type 2 diabetes than those with better periodontal health?

Studies to be included had to be non-intervention, observational studies such as cohort, case-control (cases represented by periodontally-affected subjects and controls by non periodontally – affected subjects) or cross-sectional in design. In the selected studies, exposure had to be periodontal status (measures of inflammation, sings of disease such as pocketing and attachment level excluding tooth loss/edentulousims) of the included subjects and outcome one parameter related to diabetes such as measures of glucidic metabolism (glycated hemoglobin (Hb1Ac), fasting and 2-h 75 g plasma glucose (FBG) level and oral glucose tolerance test (OGT)), incidence of new cases, diabetes-related complications. Only studies in English language were selected.

Information sources and Search

We conducted a search on electronic databases using the same MeSH terms and free text words,

Presence of duplicates was assessed through Mendeley software.

Study selection and Data Collection

Eligibility assessment was performed through titles, abstract analysis, and full text analysis. Titles and abstracts of the search results were initially screened by the two reviewers (F.G. and M.P.), for possible inclusion in the review. Each round of calibration consisted of a duplicate, independent validity assessment of 20 titles and abstracts from the search. After two rounds of calibration, a consistent level of agreement was found.

In order to avoid excluding potentially relevant articles, abstracts providing unclear results were included in the full text analysis. The full text of all studies of possible relevance was then obtained for independent assessment against the stated inclusion criteria. Any disagreement was resolved by discussion among the reviewers.

Excluded articles were classified according to a hierarchical scale according to the main reasons for exclusion (Borgnakke et al. 2013): N1. Not original study (review, guidelines, comment); N3. Original, but not epidemiologic study; N4. Original, but interventional study; N2. Original study, but not on effect of periodontal disease on glycaemic control; N5. Other reasons.

Manuscripts not to be excluded were categorized into the following groups: E1. Glycaemic control in not known diabetes, E2. Incident type 2 diabetes (new diabetes developed in individuals without diabetes at baseline).

Data of the included articles were extrapolated through an “ad hoc” extraction sheet.

Data Items

Risk of bias across studies

Heterogeneity among the studies was tested when feasible and evaluated through Q and I² test. A p value of Q statistic <0.05 was defined as an indicator of heterogeneity and data were considered heterogeneous for I² value higher than 40%.

Risk of bias in individual studies

The quality of each cohort and case-control study according to NOS for Assessing the Quality of Non-randomized Studies (Wells et al. 2011). Evaluation of cross-sectional studies was made according to scale suggested by Borgnakke and co-workers (Borgnakke et al. 2013). Using these forms, we rated each report at both the study and outcome levels.

Summary measures and synthesis of the results

Outcomes considered were odds ratios (OR), hazard ratios (HR) and hazard rate ratios (HRR), risk ratios, rate ratios or relative risks (RR). Results were presented as the manuscript presented by Needleman and co-workers in a recent EFP workshop highlighting results of the previous
Additional analysis

Meta-analysis was performed when outcome data were homogenous and available from at least three studies. HbA1c was expressed as whited mean differences (WMD) and 95% CI for continuous outcomes using random model. The patient was the unit of the analysis. Analyses were performed with OpenMeta[Analyst]

http://www.cebm.brown.edu/open_meta/open_meta/open_meta

Hazard ratios (HR) was expressed as mean effect size and 95% CI for dichotomous data using random model and was calculated with Meta-Essentials: Workbooks for meta-analysis (Version 1.1) (http://www.erim.eur.nl/research-support/meta-essentials/downloads/).

Results

Study selection

A total of 696 studies, published between 2013 and 2017, were identified for inclusion in the review (Fig. 1). Screening of titles and abstracts led to rejection of 595 papers and thus the full text of the remaining 101 papers was obtained. After full-text analysis and the exclusion of further 80 articles, the remaining 21 articles were analysed for methodological quality and availability of data for systematic review or meta-analysis (Tab.1). The final evidence was obtained including the 6 articles selected in the meta-analysis of Borgnakke et al., for what concerning the period until the January 2013.

Table 1. The 27 reports included in the final review: citations; the 6 article in red have been included from Borgnakke et al. (Borgnakke et al. 2013)

health in Pomerania (SHIP). Diabetes Care 33, 1037–1043. doi:10.2337/dc09-1778.

Fig.1. Flow of studies during review
Description of characteristics, results and quality of each study

The findings from this review are described in the following for each of the originally posed questions. For each topic, a table displays the characteristics and findings from each study, and a brief summary is provided of only the longitudinal results, that is, any cross-sectional findings at baseline are not shown. Importantly, all confounders for which the analyses are controlled are displayed for each outcome or model, respectively, in Tables 2–3 under the heading “Confounders Controlled.” In consideration of space and readability, these confounders will not be re-cited in the text. Risk of bias within and across studies is addressed briefly and the consensus NOS quality scores for each study are displayed in the online Appendix, with such tables corresponding by topic to the results tables included in this main report. All studies were conducted among adults.

Do people without manifest type 2 diabetes, who have poorer periodontal health, have poorer glycaemic control than those with better periodontal health?

Findings of New Evidence

Non-diabetic subjects, in a follow-up ranging from 4 to 10 years, showed a greater deterioration of glycaemic control as showed by an increase of Hb1Ac, impaired glucose tolerance or metabolic syndrome incidence associated with higher values of periodontal parameters such as PPD or CAL (Saito et al. 2004, Demmer et al. 2010b, Morita et al. 2010). Each additional millimeter of PPD determined a 0.13% increase of Hb1Ac (Saito et al. 2004). Overall, it appeared that subjects with periodontitis have a higher risk of worse glycaemic control.

The data allowed meta-analysis of the Hb1Ac values based on 47,781 subjects. Subjects with periodontitis showed a weighted mean (WM) of 5.64 % (5.54-5.74 %, 95% C.I.). Whilst non-affected subjects showed a WM 5.31 % (5.18-5.44 %, 95% C.I.), showing a statistically significant (p<0.01) WM difference of 0.29 % Hb1AC (0.20-0.37 %, 95% C.I.).
Quality Assessment

The quality of the included study is depicted in the Table S1-3. A significant heterogeneity was noted among the included studies. Periodontal outcomes were taken in full-mouth examination (Javed et al. 2013, Xiong et al. 2013, Arora et al. 2014, Perayil et al. 2014, Banu et al. 2015, Hong et al. 2016, Chang et al. 2017), partial-mouth (Taylor et al. 1996, Saito et al. 2004, Morita et al. 2010, Demmer et al. 2010a, Longo et al. 2014, Kapellas et al. 2014, Choi et al. 2014, Lee et al. 2015) or gathered from electronic clinical notes/database (Boland et al. 2013). The majority of the studies were of cross-sectional design.

Some of the included articles were performed in selected populations such as adolescents (Lee et al. 2015) or young adults (Chiu et al. 2015a) and thus not generalizable. Some of the data are gathered form cross-sectional studies which primary intention was not to compare periodontitis versus non-periodontitis affected subjects. Moreover, these studies may highlight association rather than causality.

Fig.2. Forrest Plot from random effect of meta-analysis evaluating the difference in Hb1Ac among periodontitis affected subjects (cases) and non-affected ones (control) as gathered from observational studies (weighted mean difference (WMD), 95% Confidence Interval (C.I.)).

<table>
<thead>
<tr>
<th>Studies</th>
<th>Cases (95% C.I.)</th>
<th>Controls (95% C.I.)</th>
<th>WMD (95% C.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong et al. 2015</td>
<td>5.86 (5.81, 5.91)</td>
<td>5.72 (5.70, 5.74)</td>
<td>0.14 (0.09, 0.19)</td>
</tr>
<tr>
<td>Sinirinvaas et al. 2015</td>
<td>5.60 (5.45, 5.75)</td>
<td>5.17 (5.11, 5.23)</td>
<td>0.43 (0.27, 0.59)</td>
</tr>
<tr>
<td>Garcia et al. 2015</td>
<td>5.86 (5.80, 5.92)</td>
<td>5.55 (5.53, 5.57)</td>
<td>0.31 (0.25, 0.37)</td>
</tr>
<tr>
<td>Perayil et al. 2015</td>
<td>6.08 (6.00, 6.26)</td>
<td>5.29 (5.23, 5.46)</td>
<td>0.70 (0.59, 0.81)</td>
</tr>
<tr>
<td>Arora et al. 2014</td>
<td>5.43 (5.00, 5.86)</td>
<td>5.18 (4.70, 5.66)</td>
<td>0.25 (-0.40, 0.90)</td>
</tr>
<tr>
<td>Golharie et al. 2014</td>
<td>4.75 (4.45, 5.05)</td>
<td>4.75 (4.49, 5.01)</td>
<td>0.00 (-0.39, 0.39)</td>
</tr>
<tr>
<td>Deppika & Saxena 2013</td>
<td>5.76 (5.67, 5.85)</td>
<td>5.63 (5.53, 5.73)</td>
<td>0.13 (-0.00, 0.26)</td>
</tr>
<tr>
<td>Tu et al. 2013 (1)</td>
<td>5.73 (5.71, 5.75)</td>
<td>5.84 (5.53, 5.55)</td>
<td>0.19 (0.16, 0.22)</td>
</tr>
<tr>
<td>Tu et al. 2013 (2)</td>
<td>5.75 (5.72, 5.78)</td>
<td>5.61 (5.59, 5.63)</td>
<td>0.34 (0.11, 0.17)</td>
</tr>
<tr>
<td>Javed et al. 2014</td>
<td>4.80 (4.62, 4.98)</td>
<td>4.30 (4.23, 4.37)</td>
<td>0.50 (-0.31, 0.69)</td>
</tr>
<tr>
<td>Overall (P^2=6264 %, P<0.01)</td>
<td>5.64 (5.54, 5.74)</td>
<td>5.31 (5.18, 5.44)</td>
<td>0.29 (0.20, 0.37)</td>
</tr>
</tbody>
</table>
Table 2. Effect of Periodontal disease on metabolic control in subjects without diabetes. Articles in red have been included from Borgnakke et al. (Borgnakke et al. 2013)

<table>
<thead>
<tr>
<th>Author Year</th>
<th>Country</th>
<th>Study Design</th>
<th>Comparison groups</th>
<th>EXPOSURE</th>
<th>OUTCOME</th>
<th>Effect on Metabolic Control? & Generalizable?</th>
<th>Effect size: Odds Ratio (OR), Trend, HR, HRR & Significance (95%CI)</th>
<th>Effect on Metabolic Control/Conclusion</th>
<th>Confounders Controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saito et al. 2004</td>
<td>Japan</td>
<td>Retrospective Cohort*</td>
<td>All without DM @BL in 1988 A) @ FU in 1998: N1=961 (377M+584F) N2=591=those among N1 aged >40yrs in 1988 N3=545 w/HbA1c values both at BL and FU A) 40-79 yrs B) 10 yrs</td>
<td>Partial mouth** a) Perio Cases b) Comparison groups</td>
<td>• 2hr 75g OGTT (BL) • IGT • HbA1c • Incident Glucose</td>
<td>Intolerance: NGT in 1988 & IGT in 1998 • Glucose Intolerance progression= HbA1c (1998) – HbA1c (1988) >0.2%</td>
<td>Yes, stat.sign. in Japanese (Hisayama) 40-79yrs community dwellers</td>
<td>1) High vs.Low PPD categories: OR=2.4 (1.4-2.6; p= 0.009) for risk of IGT 2) No sign. increase in IGT with mean CAL</td>
<td>1) Proportion w/IGT increased significantly w/mean PPD 2) Those w/normal BL GT who developed IGT over 10 years were sign. more likely to have deep PPD, but not CAL, at FU 3) Each additional mm mean PPD corresponded to 0.13% HbA1c increase (p=0.007) 4) Severity of perio-dontal disease expressed as PPD, but not CAL, was sign. associated with development of glucose intolerance</td>
</tr>
<tr>
<td>Demmer et al. 2010</td>
<td>Germany (Pomerania)</td>
<td>A) N=2,793 (47%M+53%F) a1) 488 a2) 463</td>
<td>Perio Exam: Partial mouth* Tooth count:</td>
<td>HbA1c</td>
<td>Yes, stat. sign. in Caucasians in Pomerania in former East Germany Not generalisable</td>
<td>1) BL # teeth was not consistently associated with 5yr change in HbA1c (p<0.84) 2) Those perio healthy at 5-year change in mean CAL (but not in mean PPD) was associated with HbA1c change</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: *: May be regarded as 1998 cross-sectional exam plus 1988 OGTT data, i.e., oral health data only from 1998 (not from BL 1988); **NHANES III protocol (1 max. + 1 mand. quadrant); 4 "trained" examiners; No calibration reported
<table>
<thead>
<tr>
<th>Cohort</th>
<th>No DM</th>
<th>Full mouth <28 teeth PPD CAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a3) 479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a4) 241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) 1,122 B) 48(+15) yrs [20-81 yrs]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C) 5 yrs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| BL & FU | had less 5yr HbA1c change than those w/poor BL perio health and 5yrs perio deterioration: 0.005 vs. 0.143% (p=0.003) |

<table>
<thead>
<tr>
<th>Cohorts</th>
<th>Morita et al. 2010 Japan Cohort</th>
<th>No DM</th>
<th>No MetS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) N=1,023 (727M+296F)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B) 37.3 yrs [20-56 yrs]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C) 4 yrs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Partial mouth (sexants)
- CPI Codes:
 - 0: healthy
 - 1: bleeding
 - 2: calculus
 - 3: >1 PPD 4-5mm
 - 4: >1 PPD> 6mm
- PD Groups:
 - CPI < 2 vs. CPI > 3

Incidence of metabolic syndrome
- OR=1.6 (1.1-2.2; p<0.05) for >1 positive MetS component vs. no positive MetS component in PD; OR=1.4 (1.0-2.1) for >1; OR=2.2 (1.1-4.1) for >2 MetS components

Yes, stat. sign. in (71% male) Japanese employees under 60 years
- Not generalisable

In initially healthy individuals, periodontal disease is associated in a dose-response manner with development of >1 components of metabolic syndrome over 4 years
- *age
 - gender
 - cigarette
 - smoking
 - exercise
 - eating btw.
 - meals
 - weight at BL
 - Multivariate

COMMENTS: Study of Health In Pomerania (SHIP); *right or left side of mouth; Good to excellent agreement in intra- and inter-examiner periodontal exam calibration

COMMENTS: No examiner calibration; Dose-response effect stat. sign for trend; CPI is a poor measure of PD

COMMENTS: Full mouth & PD groups based on % BL sites w/CAL>5mm:
- a1) 1-8%
- a2) 9-33%
- a3) 34-100%
- a4) Edentulous

Used 3 additional PD groupings based on:
1) BL PPD
2) BL # teeth
3) 5yr change in % sites w/CAL>5mm

Morita et al. 2010
- Japan Cohort
- No DM
- No MetS

COMMENTS: Fibrinogen, hsCRP, sex, region, smoking, education, family DM history, Multivariate linear regression

COMMENTS: BL & FU had less 5yr HbA1c change than those w/poor BL perio health and 5yrs perio deterioration: 0.005 vs. 0.143% (p=0.003)

COMMENTS: Dose-response effect stat. sign for trend; CPI is a poor measure of PD
Tu et al. 2013 Taiwan
Cross-sectional NO DM

A) N= 33,740 (18,469 F + 15,271 M)
 Perio
 a) 10381
 b) H=18536
 B) CP:
 M= 53.22 yrs (dev.st 11.15)
 F= 54.15 yrs (dev.st 11.08)
 H:
 M=50.55 yrs (dev.st 12.93)
 F=47.05 yrs (dev.st 11.48)
C) NA

Gingivitis group: at least one tooth with the diagnosis of gingivitis but not periodontitis;
Periodontitis group: at least one tooth with the diagnosis of periodontitis;

FBG
PC
HbA1c (%)
Insulin resistance
Metabolic syndrome

Yes, periodontal patients had statistically significant higher FBG, PC and HbA1c, compared to the reference control group.

Periodontitis is highly associated with insulin resistance and metabolic syndrome in female subjects. A weaker relation was noted for men (insulin resistance and periodontitis)

Not generalizable

Xiong et al. 2013 USA Case-Control NO DM

A) N=39
 Perio
 a) 13
 b) 26
B) prior GDM
 • <25 years old= 1

Full-mouth periodontal examination at six sites per tooth:
• Probing depth (PD)
• Gingival margin level
• Clinical attachment loss (CAL)
• Bleeding on probing (BOP)

FBG
• 1/2-hour glucose (mg/dL)
• 1-hour glucose (mg/dL)
• 2-hour glucose (mg/dL)
• Fasting insulin (uU/mL)
• 1/2-hour insulin (uU/mL)
• 1-hour insulin (uU/mL)
• 2-hour insulin (uU/mL)
• HOMA-IR

• 1/2-hour glucose (mg/dL):
 112.48 ± 1.25 (NPD)
 138.41 ± 1.30 (PD) p<0.05
• 1-hour glucose (mg/dL):
 91.62 ± 1.33 (NPD) 132.50 ± 1.34 (PD) <0.01
• 2-hour glucose (mg/dL):
 90.66 ± 1.25 (NPD) 98.15 ± 1.41 (PD) NS

Subject with periodontitis were characterized by higher level of Fasting glucose, postprandial glucose and HbA1c respect gingivitis and reference group.

Periodontitis is highly associated with insulin resistance and metabolic syndrome in female subjects. A weaker relation was noted for men (insulin resistance and periodontitis)

There is an increased prevalence of MetS in women affected by gingivitis and periodontitis. Effect even stronger in non smokers.

COMMENTS: no radiographs or periodontal charting was taken. No calibration reported. Only private patients coming from upper and middle class only.
<table>
<thead>
<tr>
<th>Age</th>
<th>Race/ethnicity</th>
<th>Sex</th>
<th>Education</th>
<th>Physical activity level</th>
<th>Cigarette Smoking</th>
<th>Alcohol consumption</th>
<th>Caloric intake</th>
<th>BMI</th>
<th>Triglycerides</th>
<th>Total cholesterol</th>
<th>HDL-cholesterol</th>
<th>C-reactive protein (CRP)</th>
<th>White blood cell count (WBC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>IGT prevalence:</td>
<td>controls 12%</td>
<td>cases 31%</td>
<td>OR varied according to the model of adjustment from 1.75 (1.16–2.62) to 2.90 (1.80–4.68) highly significant.</td>
<td></td>
</tr>
<tr>
<td>IFG prevalence</td>
<td>controls 38%</td>
<td>cases 59%</td>
<td>OR varied according to the model of adjustment from 1.05 (0.56–1.99) to 2.01 (1.28–3.14). Only few models of adjustment reached significance.</td>
<td></td>
</tr>
<tr>
<td>Yes, severe periodontitis was associated with a 93% increase in the odds of impaired glucose tolerance after multivariable adjustment. Findings were similar for mean PD. Associations between measures of periodontal infection and IFG were weak and not statistically significant.</td>
<td>Generalizable</td>
<td>Multivariable logistic regression models</td>
<td>Clinical measure of periodontal infections are associated with pre-diabetes</td>
<td></td>
</tr>
</tbody>
</table>
Periodontal status
Mean PD ≥75th percentile:
• Isolated-IFG, OR= 0.91 [0.57, 1.45];
• Isolated-IGT, OR= 1.85 [0.73, 4.66];
• Combined IFG+IGT, OR= 2.06 [0.91, 4.66]; p= 0.05;

COMMENTS: part of the NHANES, may be regarded as cross-sectional; Periodontal examination were made by trained, registered hygienist whose received intense training followed by periodic monitoring and recalibration against a reference examiner.

Choi et al. 2014 USA Cross-sectional NO DM

A) N= 5,731 (2,575 M + 3,156 F)
Periodontal quartiles:
a1) Q1=1462
a2) Q2=1416
a3) Q2=1420
a4) Q2=1433
B) 20-65 yrs (43±16.9 yrs)
C) 3 yrs

Fasting plasma glucose (FPG)
• normal; FPG <100 mg/dL (5.6 mmol/L)
• prediabetes:100<FPG<126mg/dL (7.0 mmol/L),
• diabetes: FPG >126 mg/dL or self-reported

Median CAL:
• Q1= 0.27
• Q2= 0.59
• Q3=1.00
• Q4= 2.19

Yes, there was a statistically significant association between IFG and diabetes with CAL, in particular Q3 and Q4; for what concerning PD, Q4 was associated with IFG and Q2, Q3 and Q4 were associated with diabetes.

Confounding Effect (OR [95% confidence interval]) of CRP and Antibodies on CAL and Prediabetes and Diabetes -Quartile for CAL
IFG
• Q2=0.97 (0.83 to 1.13)*; 0.96 (0.83 to 1.13)**; 0.97 (0.83 to 1.13)***; 0.97 (0.83 to 1.13)****
• Q3=1.34 (1.25 to 1.44)*; 1.34 (1.25 to 1.43)**; 1.35 (1.26 to 1.45)***; 1.34 (1.25 to 1.43)****
• Q4=1.74 (1.62 to 1.86)*; 1.75 (1.64 to 1.87)**; 1.76 (1.65 to 1.88)***; 1.73 (1.62 to 1.85)****

DIABETES
• Q2=1.22 (0.99 to 1.51)*; 1.28 (1.04 to 1.59)**; 1.22 (0.99 to 1.51)***; 1.20 (0.97 to 1.48)****
• Q3=1.43 (1.16 to 1.76)*;

A strong association was noted among periodontitis and diabetes in individuals with high levels of CRP and P.gingivalis.
1.48 (1.20 to 1.83)**; 1.48 (1.20 to 1.83)***; 1.40 (1.15 to 1.71)****

- Quartile for PPD: IFG
 • Q2=0.94 (0.79 to 1.10)*; 0.93 (0.79 to 1.10)**; 0.94 (0.79 to 1.10)***; 0.93 (0.79 to 1.10)****
 • Q3=1.12 (0.93 to 1.35)*; 1.12 (0.93 to 1.35)**; 1.12 (0.93 to 1.35)***; 1.12 (0.93 to 1.35)****
 • Q4=1.27 (1.12 to 1.45)*; 1.27 (1.12 to 1.46)**; 1.27 (1.12 to 1.45)***; 1.26 (1.10 to 1.44)****

- Quartile for PPD: DIABETES
 • Q2=1.66 (1.45 to 1.91)*; 1.61 (1.38 to 1.87)**; 1.64 (1.43 to 1.88)***; 1.63 (1.40 to 1.90)****
 • Q3=1.28 (1.08 to 1.52)*; 1.27 (1.07 to 1.51)**; 1.29 (1.09 to 1.53)***; 1.25 (1.03 to 1.51)****
 • Q4=1.66 (1.33 to 2.08)*; 1.61 (1.29 to 2.02)**; 1.66 (1.31 to 2.09)***; 1.53 (1.21 to 1.94)****

COMMENTS: Limitation of the NHANES in terms of oral measurement; calibration not reported

<table>
<thead>
<tr>
<th>El-Beshbishy et al.</th>
<th>2014 Saudi Arabia Cross-Sectional NO DM</th>
<th>N=60</th>
<th>A) 5 periodontitis systemically healthy</th>
<th>a1) 5 periodontitis systemically healthy</th>
<th>Presence of Periodontitis</th>
<th>% of diabetes cases</th>
<th>% of diabetes was higher in PD affected subjects no statistical difference was reported.</th>
<th>% of diabetes: 13.3 % NO PD vs 20% PD 5.9% (AMI NO PD), vs 38.5%(AM+PD)</th>
<th>Among AMI patients, the % diabetes is higher in people affected by periodontitis</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A) N=60</td>
<td>a1) 5 periodontitis systemically healthy</td>
<td>Presence of Periodontitis</td>
<td>% of diabetes cases</td>
<td>% of diabetes was higher in PD affected subjects no statistical difference was reported.</td>
<td>% of diabetes: 13.3 % NO PD vs 20% PD 5.9% (AMI NO PD), vs 38.5%(AM+PD)</td>
<td>Among AMI patients, the % diabetes is higher in people affected by periodontitis</td>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Infarction (AMI)

- **b1)** H=25 perio and systemically healthy
- **b2)** H+ AMI= 17 perio and AMI

Comments

Not generalizable

Comments: limited sample, no statistical analysis in metabolic outcome, no adjustments. No information on periodontal examination.

<table>
<thead>
<tr>
<th>Flores et al. 2014</th>
<th>A) N=93 (57 M; 63F)</th>
<th>Statistically significant differences for FPG between periodontitis and controls; No statistically significant differences for HbA1c</th>
</tr>
</thead>
</table>
| a1) 51 previous myocardial infarction | • VP
• GR
• PPD
• BOP
• FPG
• HbA1c | • FPG=126.8±48.4 (P); 109.8±37.5 (NO-P), p=0.03
• HbA1c= 7.2±2.3 (P); 6.4±1.1 (NO-P), p=0.17 |
| a2) 42 other major cardiovascular events | B) 61.5±9.8 yrs
C) NA | Patients affected by periodontitis were characterized by higher level of fasting plasma glucose |

Comments: Limited sample on cardio-vascular subjects. Two trained and calibrated examiners, but calibration modalities are not reported.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Study Design</th>
<th>Sample Size</th>
<th>Age</th>
<th>Gender</th>
<th>Methodology</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gokhale et al.</td>
<td>India</td>
<td>Case-control</td>
<td>N=60 (24 M, 36 F)</td>
<td>36-60 yrs</td>
<td>44.2 yrs</td>
<td>Full mouth Periodontal examination (4 sites/tooth)</td>
<td>No statistically significant differences for HbA1c and RBS between periodontitis and no periodontitis in systemically healthy patients</td>
</tr>
<tr>
<td>Javed et al.</td>
<td>Pakistan</td>
<td>Cross-sectional</td>
<td>N=88 (M)</td>
<td>39-51 yrs</td>
<td>NA</td>
<td>Periodontal clinical parameters: plaque index, bleeding on probing, probing depth, attachment loss, number of missing teeth</td>
<td>No effect was noted (FBG mg/dL: CP= 80.1 ± 3.5; NO CP= 75.3 ± 2.2; HbA1c %: CP=4.8 ± 0.5; NO CP= 4.3 ± 0.2; Not significant)</td>
</tr>
<tr>
<td>Kapellas et al.</td>
<td>Australia</td>
<td>Cross-sectional</td>
<td>N=310</td>
<td></td>
<td></td>
<td>Partial Periodontal examination: -For 6 index teeth:</td>
<td>Yes, there are statistically significant differences for self-reported diabetes, No. self-reported diabetes – (Yes) <0.01, Non-cases:0, M-PD= 21 (11.2), 5-PD= 20 (24.4)</td>
</tr>
</tbody>
</table>
Session Premio H.M. Goldman - H.M. Goldman Prize Session
XVIII Congresso Internazionale – 18th International Congress SIdP
Rimini (I), March 16th 2017

| DM | b1) 39=non cases | • Oral plaque score
| | B) 22-73 yrs
| | C) NA | • Dental calculus
| | | -At 4 sites for every other tooth:
| | | • PPD
| | | • GR
| | | • CAL
| | | • Moderate Periodontitis: >2 interprox sites with CAL>4mm, or >2 sites with PD>5 mm
| | | • Severe Periodontitis: >2 interprox sites with CAL>6mm and >1 site with PD>5 mm
| | | among different periodontal groups
| | | sample of Indigenous Australian adults
| | | Not generalizable

COMMENTS: Calibrated examiners, but calibration modalities are not specified

| Longo et al. | Brazil Case-Control DM | A) N=42 (23 M, 19 F)
| Perio | a1) P=6 (5 M, 5 F)
| a2) DM+F=10 (4M, 6 F)
| a3) DMA+P=10 (6M, 4 F)
| b1) H=6 (2M, 4F)
| b2) DMPH=10 (8M, 4 F)
| B) >35 yrs
| C) 15 months | Full mouth Periodontal examination (6 sites/tooth)
| | • PI
| | • Ging/BOP
| | • PPD
| | • CAL
| | HbA1c
| | No, there were no statistically significant differences for HbA1c %
| | HbA1c %
| | • H=5.18±0.60
| | • P=5.43±0.54
| | The presence of periodontitis in healthy patients, did not statistically influenced glycaemic controls
| | None

COMMENTS: Underpowered sample per comparison; Intraexaminer reliability for detecting PDs within 1 mm was >90%.

| Perayil et al. | A) N=60 (26 M + 34 F)
| HbA1c level | Yes, there were significant
| HbA1c level of group PD (6.08% ±0.23%) was higher
| HbA1c level was higher in PD group | None

India Case-control NO DM

<table>
<thead>
<tr>
<th>A1) PD=30</th>
<th>Full mouth periodontal assessment on 6 sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1) H=30</td>
<td>- oral hygiene index simplified(OHI-S) score</td>
</tr>
<tr>
<td>B) 35-65 yrs</td>
<td>- gingival index (GI)</td>
</tr>
<tr>
<td>c)</td>
<td>- probing depth (PD)</td>
</tr>
<tr>
<td></td>
<td>- clinical attachment level (CAL)</td>
</tr>
<tr>
<td></td>
<td>Periodontitis: PD ≥5 mm and CAL >3 mm in ≥5 teeth</td>
</tr>
</tbody>
</table>

Differences between group H and group PD in regard to baseline OHI-S, GI, PD, and HbA1c (P <0.05).

Not Generalizable

Comments: Single, trained examiner, but calibration modalities are not reported.

Rao Deepika & Saxena 2013

<table>
<thead>
<tr>
<th>N=60</th>
<th>Examiner trained and calibrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1) PD=30</td>
<td>CAL,BOP, PD</td>
</tr>
<tr>
<td>b1) H=60 3 months 35-65 yrs</td>
<td>PD= CAL >30% + BOP in more than 30% sites</td>
</tr>
<tr>
<td></td>
<td>Controls: PPD<4 mm + BOP< 15%, no previous PD treatment, no CAL</td>
</tr>
</tbody>
</table>

HbA1c level

There was a slight increase of HbA1c level in periodontitis group (5.76%) in comparison to controls (5.63%), p=0.071

Among women, HbA1c was statistically significant higher (p=0.024) in cases (5.81%) vs controls (5.54%)

The level of HBA1Ac was not statistically significant between PD and controls

Not generalizable

Comments: Undajusted data. No info on calibration of the examiners.

Banu et al. 2015

<table>
<thead>
<tr>
<th>A) N=60 (23 M + 37 F)</th>
<th>Periodontal examination:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1) 40 CP</td>
<td>- PI</td>
</tr>
<tr>
<td>b1) 20 H</td>
<td>- PPD</td>
</tr>
<tr>
<td>B) 40-65 yrs</td>
<td>Bitewing radiographs:</td>
</tr>
<tr>
<td>C) 15 months</td>
<td>- interproximal bone loss</td>
</tr>
</tbody>
</table>

No statistically significant differences among H and CP for FPG and Insulin level

- FPG (mg/dl): H=88.75±7.05; CP=89.70±6.56; p=0.662
- IU: H=5.90±1.70; CP=7.16±5.92; p=0.367

The presence of periodontitis did not statistically influenced glycaemic controls

None
from the cemento-enamel junction of the tooth to the bone crest for each patient

Chronic periodontitis
- radiographic evidence of interproximal bone loss (>50% alveolar bone loss in >2 quadrants of the dentition
- >4 teeth should be involved in each jaw, >5mm PD, >4 mm clinical attachment level, and 80% BOP of the proximal sites.

Not generalizable continuous variables between groups were compared by the use of Kruskal–Wallis test.

COMMENTS: Examiners number not specified and calibration modalities are not reported

Garcia et al. 2015 USA Cohort DM & NO DM

A) N=7,042 (3506 M; 3536 F)

Periodontal examination based on the FMPE protocol

DM status as self-reported DM glycemic control was stratified using Hb1AC cut-off points of 7.0%, 7.5%, 8.0%, 8.5%, and 9.0%.

Periodontitis Status by Self-Reported DM Status and Glycemic Control

Adjusted OR for Periodontal Status By Hb1AC cut-off:
1) DM<7.0%=0,98 (0,70-1,36); DM> 7.0%=1,33 (1,01-1,75)
2) DM<7.5%=0,96 (0,71-1,29); DM> 7.5%=1,58 (1,10-2,28)
3) DM<8.0%=1,00 (0,75-1,32); DM> 8.0%=1,65 (1,17-2,33)
4) DM<8.5%=0,98 (0,75-1,29); DM> 8.5%=2,17 (1,52-3,11)
5) DM<9.0%=1,00 (0,77-1,32); DM> 9.0%=2,22 (1,41-3,51)

Glycoemoglobin % OR=1,14 (1,08-1,22)

Demographic factors:
- Age
- Gender
- Educational Level
- Marital Status
- Race/Ethnicity
- Smoking Status
- Federal Poverty Level, Number of Teeth

Behavioral and dental
- BMI
- Smoking status
COMMENTS: Full mouth periodontal examination data from NHANES 2009-2012. Examiner calibration not reported. Definition of total periodontitis from the American Academy of Periodontology (AAP)

Islam et al. 2015 South Korea Cohort DM + NO DM

A) N=19122 (8248 M + 10874 F)
a1) CP= 5070
a2) CP+DM= 922
b1) H=12108
b2) DM=1022
B) >20yrs C) 3 yrs

Partial mouth CPI normal (CPI=0), gingival bleeding (CPI=1), calculus (CPI=2), a shallow periodontal pocket of 3.5~5.5 mm (CPI=3) or a deep periodontal pocket of 5.5 mm or more (CPI=4).

PD=CPI ≥ 3.

• glucose
• insulin resistance
• HbA1c

IFG diabetes mellitus was defined based on physician diagnosis or those with a fasting blood glucose ≥ 126 mg/dL, taking insulin or antidiabetic medication.

No, there were no statistically significant differences (p=0.172) although higher levels of HbA1c were found in periodontitis participants as compared to those without

In logistic regression analysis periodontitis showed a significant association with IFG as an independent variable after adjustment for potential confounding factors in every model (p<0.001).

Higher mean HbA1c levels were found in periodontitis patients rather than subjects without periodontitis, although the result was statistically insignificant.

In patients without diabetes, the prevalence of IFG was higher in periodontitis patients as compared to subjects without periodontitis (28.5% vs. 17.7%).

COMMENTS: no info on calibration of the examiner; CPI is a poor measure of PD

Lee et al. 2015 Korea Cross-Sectional NO DM

A=941 (590 M+ 351 F)
a1) Code CPI 0 (N = 579)
a2) Code 1 (N = 125)
a3) Code 2 (N = 228)
b) 12-18 yrs C) 1 year

Partial mouth Periodontal examination CPI

• 0=healthy
• 1=bleeding following probing
• 2=presence of dental calculus
• 3,4 >PD<5 mm
• 4=PD ≥6 mm

Subjects divided in healthy gingiva and gingivitis (CPI ≥1)

FBG (mg/dL)

Risk of MetS:
three or more of these parameters: abdominal obesity; FPG ≥110 mg/dL; elevated blood pressure including treatment for hypertension; hypertriglyceridemia: serum triglyceride level ≥110 mg/dL; and low HDL cholesterol: serum HDL cholesterol ≤40 mg/dL.

FBG: 89.19±0.29 mg/dL (no gingivitis); 88.82±0.45 mg/dL (gingivitis), p=0.526

OR for gingivitis for High fasting glucose: crude=0.07 (0.01–0.70); adjusted= 0.07 (0.00–0.81)

The presence of periodontitis did not statistically influence glycaemic control, nor risk of MetS

• age
• gender
• income
• dental check-up
• frequency of brushing
• frequency of eating between meals
• physical activity
Srinivasa 2015	Clinical parameters: • PPD • BoP • CAL
India Case-control General population	H = PDs ≤4 mm and BoP ≤15% and no CAL
	Severe PD = at least five teeth with PD ≥5 mm, BOP and CAL>1 mm on >5 teeth or radiographic bone loss
Yes, there were statistically significant differences (p = 0.003) for HbA1c between the two groups	HbA1c (%): Mean: Periodontitis=±SD 5.66±0.35 %; No Periodontitis= 5.17±0.3 %; p=0.003*
A) N=40 (22 M + 18F)	HbA1c levels were slightly elevated in chronic periodontitis cases than in controls.
a1) severe PD=20	None
b1) H=20	COMMENTS: limited sample. No adjustment. Not specific data about the periodontal examination and calibration modalities are not reported
B1)H= 40.1±14.4 yrs	COMMENTS: trained and calibrated examiner. Conducted in adolescents cohort. Only 8 subjects with FBG ≥ 110 mg/dl. CPI is a poor measure of PD.
B2) PD= 38.9±13.4 yrs	
	CPI Full mouth Periodontal Examination
	Periodontitis (CP) was defined as a community periodontal index score of ≥ 3
	• NFG • IFG • HbA1c (%) • Anti-diabetes medication (%) • Diabetes (%) • NFG 1hrs (<90 mg/dL) • NFG 2hrs (90-99 mg/dL) • IFG 1hrs (100–110 mg/dL) • IFG 2hrs (111–125 mg/dL), and diabetes (>126 mg/dL)
	Statistically significant differences among CP and NO CP for FPG and HbA1c and diabetes prevalence
Hong et al. 2016	Bivariate Correlation Coefficients Between Baseline Periodontal Pocket Depth and: • fasting blood glucose • hemoglobin A1c (HbA1c)=0.26, p<0.01
Republic of Korea Cross-sectional DM + NO DM	Patients affected by periodontitis were characterized by higher level of FBG and HbA1c
A) N= 9977	• age • sex • diabetes mellitus
a1) CP=2728	• PPD • hypertension • smoking • betel nut • albuminuria • creatinine
b1) H=7249	
B) 19 yrs	
C)NA	COMMENTS: subjects with chronic kidney disease; Not specific data about the periodontal examination and calibration modalities are not reported
Chang et al. 2016	
Taiwan Chronic Kidney Disease Cohort	PD The 2015 updated classifications from the American Academy of Periodontology, periodontal diseases are classified into gingivitis and periodontitis
A) N=2831	• fasting blood glucose, • HbA1c
B) 53.1± 8.4 yrs	
C) 2.4 – 7.3 yrs	Not generalizable
Yes, patients with higher periodontal pocket depth (>4.5 mm) showed FPG and HbA1c	
	• FPG mg/dL: H=96.8 (96.3–97.3), CP=100.4 (99.0–101.8), p<0.001
	• HbA1c (%): H=5.72 (5.70–5.74), CP=5.86 (5.81–5.91), p<0.001
	• Anti-diabetes medication (%): H=4.9 (4.3–5.4), CP=6.2 (4.9–7.4), p=0.072
	• Diabetes (%): H=7.60
	People affected by periodontitis were characterized by higher level of HbA1c and FPG
	COMMENTS: Subjects with chronic kidney disease; Not specific data about the periodontal examination and calibration modalities are not reported
COMMENTS: Oral examination of periodontal health was conducted by trained dentists; CPI is a screening test of PD.

AMI= acute myocardial infarction; BP, Blood Pressure; BOP= Bleeding on Probing; BPE=Basic Periodontal Examination; CKD, chronic kidney disease; C-PPD, cumulative periodontal probing depth; CPI,Community Periodontal Index; CRAE/CRVE, Central retinal arteriolar/venular equivalents; Excl., Excluding/Excluded; MetS, Metabolic Syndrome; Perio, Periodontal/Periodontally; #, Number (of); &, and; BL, Baseline/Beginning of Study Period; CAL, Clinical Attachment Loss; CI, Confidence Interval; CPI, Community Periodontal Index; DM, Diabetes Mellitus; DM2, Type 2 Diabetes Mellitus; DMCP=Diabetes + chronic periodontitis; DMA+P= Diabetics with periodontitis and adequate glycaemic control DM1+P= Diabetics with periodontitis and inadequate glycaemic control; DMG=Diabetes+ Gingivitis; DMPH= Diabetes+periodontal health; F, Female; FBG= Fasting Blood Glucose; FU, Follow-Up/End of Study Period; G= gingivitis; GR= gingival recession; GT, Glucose Tolerance; H= Systemic and periodontal healthy; Hba1c, Glycosylated (Glycated) Haemoglobin; HOMA-IR: Homeostasis Model Assessment of Insulin Resistance; hr, hour; HR, Hazard Ratio; hrs=hours hsCRP, high-sensitivity C-reactive protein; IGI/HOMA-IR: insulin secretion Index; IGT, Impaired Glucose Tolerance; IU: Insuline; M, Male; MBL=marginal bone loss; MGI= Modified Gingival Index; M= myocardial infarction; M-PD=moderate periodontitis; NFG, normal fasting glucose; NGT, Normal Glucose Tolerance; NHANES, National Health and Nutrition Examination Survey; OGTT, Oral Glucose Tolerance Test; OR, Odds Ratio; Perio/PD, PC, post-challenge glucose; Periodontal Disease; PI= Plaque index; PPD, Periodontal Probing (Pocket) Depth; RBS=Random blood sugar; R-DM2=retinopathy+ diabetes; RR, Risk Ratio; RX= X rays; SBP, systolic blood pressure; S-PD= severe periodontitis; Stat. sign., statistically significant; T-chol, total cholesterol; VP= visible plaque; vs., versus; yr(s), Year(s).

Appendix. Tab. S1 NOS scale for quality rating of Case-Control Study

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>A) SELECTION (Max. 4 Stars)</th>
<th>B) COMPARABILITY (Max. 2 Stars)</th>
<th>C) EXPOSURE: PERIODONTAL DISEASE (Max. 3 Stars)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Representativeness of the cases (Max 1 Star)</td>
<td>Selection of Controls (Max 1 Star)</td>
<td>Definition of Controls (Max 1 Star)</td>
</tr>
<tr>
<td></td>
<td>a) Study controls for age (= most important factor)</td>
<td>b) Study controls for smoking (=additional)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(6.90–8.30); CP=12.0
(10.3–13.7), p <0.001

OR for FBG 111-125
mg/dl 1.33 (1.01-1.75)
p=0.044 in periodontitis subjects
Appendix. Tab. S2 NOS scale for quality rating of Cross-Sectional Study

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>A) SELECTION (Max. 4 Stars)</th>
<th>B) COMPARABILITY (Max. 2 Stars)</th>
<th>C) OUTCOME (max 1 star)</th>
<th>TOTAL OF STAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Representativeness of the exposed subjects (Periodontal infection/Periodontitis) (Max 1 Star)</td>
<td>Selection of non-exposed subjects (No/Only mild periodontal infection/periodontitis) (Max 1 Star)</td>
<td>Ascertainment of exposure (Periodontal infection/Periodontitis) (Max 1 Star)</td>
<td>Ascertainment of outcome (Glycemic control/Diabetes) (Max 1 Star)</td>
</tr>
<tr>
<td>Rao Deepika et al. 2013</td>
<td>★ ★ ★ ★</td>
<td>★ ★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Xiong et al. 2013</td>
<td>★</td>
<td>★ ★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>El-Beshbishy et al. 2014</td>
<td></td>
<td>★</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Srinivasa et al. 2015</td>
<td>★ ★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
</tbody>
</table>

<p>| Arora et al. 2014 | ★ | ★ | ★ | ★ | ★ | 5 |</p>
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choi et al. 2014</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★</td>
<td>★</td>
</tr>
<tr>
<td>Flores et al. 2014</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★</td>
<td>★</td>
</tr>
<tr>
<td>Gokhale et al. 2014</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Javed et al. 2014</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★</td>
<td>★</td>
</tr>
<tr>
<td>Kapellas et al. 2014</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Banu et al. 2015</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★</td>
<td>★</td>
</tr>
<tr>
<td>Garcia et al. 2015</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★</td>
<td>★</td>
</tr>
<tr>
<td>Islam et al. 2015</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★</td>
<td>★</td>
</tr>
<tr>
<td>Lee et al. 2015</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Hong et al. 2016</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★</td>
<td>★</td>
</tr>
<tr>
<td>Chang et al. 2017</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★★</td>
<td>★</td>
</tr>
</tbody>
</table>
Appendix. Tab. S3 NOS scale for quality rating of Cohort Studies

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Representativeness of the exposed cohort (Max 1 Star)</th>
<th>Selection of non-exposed cohort (Max 1 Star)</th>
<th>Ascertainment of exposure (Max 1 Star)</th>
<th>A) SELECTION (Max. 4 Stars) (Max. 4 Stars)</th>
<th>B) COMPARABILITY (Max. 2 Stars)</th>
<th>C) OUTCOME (max 3 star)</th>
<th>TOTAL OF STAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morita et al. 2010</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Demmer et al. 2010</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>Saito et al. 2004</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
</tbody>
</table>
E2. Do people without known diabetes, who have poorer periodontal health, have greater risk for developing (incident) type 2 diabetes than those with better periodontal health?

Findings of New Evidence

Current evidence on the influence of periodontal disease on the risk of developing (incident) type 2 diabetes is based only on few studies that analyzed specified populations. The included study were predominantly conducted in Japan (3 out of 4 studies) for a total of 22,230 individuals (Saito et al. 2004, Demmer et al. 2010b, Ide et al. 2011, Morita et al. 2012). An increased risk of developing DMT2 was noted in subjects with poorer periodontal health was thoroughly noted, as measured by increase in PPD, and remained after adjustment in the majority of the study (Saito et al. 2004, Demmer et al. 2008a, Morita et al. 2012). The presence of PD showed increased odds for developing diabetes of 50% (Demmer et al. 2008a).

Additional evidence are gathered form two Taiwanese studies involving a total of 50486 participants followed for 5 (Chiu et al. 2015a) and 13-years (Lin et al. 2014a). In both cases an increased risk to develop diabetes was registered in PD-affected subjects. Over 5-year, young adults (aged 35-44 years) with community periodontal index score of at least 3 presented a 33 % increased risk of incident hyperglycemia (including diabetes) [adjusted hazard ratio (aHR) = 1.33 (95 % CI 1.09–1.63)] after controlling for potential confounding factors. A larger retrospective study on 22299 PD-affected subjects and 22302 periodontally healthy subjects found that DMT2 incidence, over 13-year period, was 1.24-fold higher in the PD cohort than in the control group, with an adjusted hazard ratio of 1.19 (95% confidence interval = 1.10 to 1.29). Interestingly, patients requiring periodontal surgery, i.e. probable higher severity of PD, showed a higher risk in the first 6 year.

Although the majority of the included studies have been conducted on Asiatic populations, results appear robust enough to state that subjects affected by PD show a higher chance to develop diabetes when compared to non-PD affected ones. The meta-analytic data for adjusted hazard ratio shows a value of 1.29 (95% CI 1.11-1.46, p<0.0001).

Quality assessment

The quality of the included study is depicted in the Table S4. Five of the six studies included in the study have been conducted in Asia: 3 in Japan (Saito et al. 2004, Ide et al. 2011, Morita et al. 2012) and 2 in Taiwan (Lin et al. 2014b, Chiu et al. 2015b). The other study have been conducted in USA (Demmer et al. 2008b). Consequently results are not generalizable despite the selected participants were representative of the general population. One study was of retrospective design. In one study periodontitis was measured with Community Periodontal Index (Chiu et al. 2015a) or computerized medical notes (Lin et al. 2014a).

These large cohort studies of high quality according to the NOS scale.
Fig.3. Forest plot from random effects of meta-analysis evaluating the aHR (adjusted Hazard Ratio) among periodontitis cases in terms of incident diabetes/hyperglycemia as gathered from longitudinal observational studies (weighted mean difference (WMD), 95% Confidence Interval (C.I.)).
Table 3. Effect of Periodontal disease on the risk of incident diabetes

<table>
<thead>
<tr>
<th>Author Year Country Study Design</th>
<th>Country</th>
<th>Study Type</th>
<th>Study Duration</th>
<th>Subjects:</th>
<th>EXPOSURE</th>
<th>OUTCOME</th>
<th>Effect on Metabolic Control? & Generalisable?</th>
<th>Effect size: Odds Ratio (OR), Trend, HR, HRR & Significance (95%CI)</th>
<th>Effect on Metabolic Control/Conclusion</th>
<th>Confunders Controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saito et al. 2004 Japan Retrospective Cohort* No DM</td>
<td>Japan</td>
<td>Retrospective Cohort</td>
<td>40-79yrs</td>
<td>All without DM @BL in 1988 A)@FU in 1998: N1=961 (377M+584F); N2=591=those among N1 aged >40yrs in 1988; N3=545 w/HbA1c values both at BL and FU B) 40-79yrs C)10yrs</td>
<td>Partial mouth** PPD CAL PD-1: Mean DDP: 1.3-2.0mm a2) Deep/High: >2.0mm b) Shallow/Low: <1.3mm PD-2: Mean CAL: 1.5-2.5mm b) High: >2.5mm b) Low: <1.5mm</td>
<td>2hr 75g OGTT @BL HbA1c</td>
<td>Yes, stat.sign. in Japanese (Hisayama) 40-79yrs community dwellers Not generalisable</td>
<td>1) High vs. Low PPD categories: Risk of DM: OR=2.6 (1.3-5.0;p=0.004) 2) Sign. increase in DM with mean CAL</td>
<td>1) Proportion w/DM increased significantly w/mean PPD 2) Each additional mm mean PPD corresponded to 0.13% HbA1c increase (p=0.007) 3) Severity of periodontal disease (expressed as either PPD or CAL) was sign. associated with development of manifest diabetes</td>
<td>age sex smoking BMI exercise alcohol</td>
</tr>
</tbody>
</table>

COMMENTS: *May be regarded as 1998 cross-sectional exam plus 1988 OGTT data, i.e., oral health data only from 1998 (not from BL 1988); **NHANES III protocol (1 max.+ 1 mand. quadrant) & “trained” examiners; No calibration reported
Session Premio H.M. Goldman - H.M. Goldman Prize Session

XVIII Congresso Internazionale – 18th International Congress SIdP

Rimini (I), March 16th 2017

Table: Data from NHANES 1 [1971-1976 (BL)] & NHEFS 1982-1992 (FU); n = 817 incident DM cases were reported (cumulative incidence = 9%)

<table>
<thead>
<tr>
<th>Dentition</th>
<th>CPI Codes</th>
<th>PD-2#&</th>
<th>PD-3#</th>
<th>Total Carbohydrate</th>
<th>Total Fat</th>
<th>Poverty Index</th>
<th>White Blood Cell Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>a6) edentulous</td>
<td>(Mean Score 0-8) for Dentition: a) lowest PI to a5) highest PI quintile</td>
<td>a6) edentulous</td>
<td>b) healthy: PI=0</td>
<td>PD-2#&: Those with gingivitis had 40% and those with periodontitis 50% increased odds of developing DM (p<0.05 for both)</td>
<td>1c) Edentulous: OR=1.3(1.00-1.70)</td>
<td>2) with incident diabetes was found also in normo-weight and never-smoking participants</td>
<td></td>
</tr>
</tbody>
</table>

Table: Comments

- **Data from NHANES 1 [1971-1976 (BL)] & NHEFS 1982-1992 (FU); n = 817 incident DM cases were reported (cumulative incidence = 9%)**
- **Wu et al. 2000**
- **Hujoel et al. 2000**

Table: Data from NHANES 1 [1971-1976 (BL)] & NHEFS 1982-1992 (FU); n = 2,904 w/oral exam@BL = 33.2% of original study population; No adjustment for education, income, exercise, medication, co-morbidities

- **COMMENTS: 7 “trained” examiners; Intra- & inter-examiner calibration done, but not recorded; Oral exam at BL only; FPG measured 1-6 times 2000-2007; No FU data on n = 2,904 w/oral exam@BL = 33.2% of original study population; No adjustment for education, income, exercise, medication, co-morbidities**

Table: Data from NHANES 1 [1971-1976 (BL)] & NHEFS 1982-1992 (FU); n = 817 incident DM cases were reported (cumulative incidence = 9%)

<table>
<thead>
<tr>
<th>Dentition</th>
<th>CPI Codes</th>
<th>PD-2#&</th>
<th>PD-3#</th>
<th>Total Carbohydrate</th>
<th>Total Fat</th>
<th>Poverty Index</th>
<th>White Blood Cell Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>a6) edentulous</td>
<td>(Mean Score 0-8) for Dentition: a) lowest PI to a5) highest PI quintile</td>
<td>a6) edentulous</td>
<td>b) healthy: PI=0</td>
<td>PD-2#&: Those with gingivitis had 40% and those with periodontitis 50% increased odds of developing DM (p<0.05 for both)</td>
<td>1c) Edentulous: OR=1.3(1.00-1.70)</td>
<td>2) with incident diabetes was found also in normo-weight and never-smoking participants</td>
<td></td>
</tr>
</tbody>
</table>

Table: Comments

- **Data from NHANES 1 [1971-1976 (BL)] & NHEFS 1982-1992 (FU); n = 817 incident DM cases were reported (cumulative incidence = 9%)**
- **Wu et al. 2000**
- **Hujoel et al. 2000**

Table: Data from NHANES 1 [1971-1976 (BL)] & NHEFS 1982-1992 (FU); n = 2,904 w/oral exam@BL = 33.2% of original study population; No adjustment for education, income, exercise, medication, co-morbidities

- **COMMENTS: 7 “trained” examiners; Intra- & inter-examiner calibration done, but not recorded; Oral exam at BL only; FPG measured 1-6 times 2000-2007; No FU data on n = 2,904 w/oral exam@BL = 33.2% of original study population; No adjustment for education, income, exercise, medication, co-morbidities**

Table: Data from NHANES 1 [1971-1976 (BL)] & NHEFS 1982-1992 (FU); n = 817 incident DM cases were reported (cumulative incidence = 9%)

<table>
<thead>
<tr>
<th>Dentition</th>
<th>CPI Codes</th>
<th>PD-2#&</th>
<th>PD-3#</th>
<th>Total Carbohydrate</th>
<th>Total Fat</th>
<th>Poverty Index</th>
<th>White Blood Cell Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>a6) edentulous</td>
<td>(Mean Score 0-8) for Dentition: a) lowest PI to a5) highest PI quintile</td>
<td>a6) edentulous</td>
<td>b) healthy: PI=0</td>
<td>PD-2#&: Those with gingivitis had 40% and those with periodontitis 50% increased odds of developing DM (p<0.05 for both)</td>
<td>1c) Edentulous: OR=1.3(1.00-1.70)</td>
<td>2) with incident diabetes was found also in normo-weight and never-smoking participants</td>
<td></td>
</tr>
</tbody>
</table>

Table: Comments

- **Data from NHANES 1 [1971-1976 (BL)] & NHEFS 1982-1992 (FU); n = 817 incident DM cases were reported (cumulative incidence = 9%)**
- **Wu et al. 2000**
- **Hujoel et al. 2000**

Table: Data from NHANES 1 [1971-1976 (BL)] & NHEFS 1982-1992 (FU); n = 2,904 w/oral exam@BL = 33.2% of original study population; No adjustment for education, income, exercise, medication, co-morbidities

- **COMMENTS: 7 “trained” examiners; Intra- & inter-examiner calibration done, but not recorded; Oral exam at BL only; FPG measured 1-6 times 2000-2007; No FU data on n = 2,904 w/oral exam@BL = 33.2% of original study population; No adjustment for education, income, exercise, medication, co-morbidities**
Morita et al. 2012 Japan Cohort

<table>
<thead>
<tr>
<th>A)</th>
<th># @ BL unknown*</th>
<th>Partial mouth CPI Code:</th>
<th>Yes, stat. sign. in employed 30-69 years old (76.6% male) Japanese (Nagoya) Not generalisable</th>
</tr>
</thead>
<tbody>
<tr>
<td>N @ FU=6,125 (76.6%M+23.4%F) w/BL HbA1c<6.5%</td>
<td></td>
<td>HbA1c>6.5% @ FU</td>
<td></td>
</tr>
<tr>
<td>a1) 4,114 (3,838M+731F)</td>
<td>CPI Code 0:</td>
<td>CPI Code 3:</td>
<td></td>
</tr>
<tr>
<td>a2) 1,634 (1,424M+210F)</td>
<td>Healthy gingiva</td>
<td>>1 PPD= 4-5mm PD by CPI Code:</td>
<td></td>
</tr>
<tr>
<td>b) 377 (240M+137F)</td>
<td>CPI Code 4:</td>
<td>a1) 3</td>
<td></td>
</tr>
<tr>
<td>C) 4-5.5yrs</td>
<td>>1 PPD> 6mm</td>
<td>a2) 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) 0</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: *No FU of those who left the workplace during study period; Kappa statistics 0.7-0.9 for calibration of 7 dentist periodontal examiners; Dose-response effect % of BL CPI codes 0, 3, & 4 w/5yr HbA1c>6.5%: 0.8%, 2.5%, and 3.9% (p = 0.001)*

Lin et al. 2014 Taiwan Retrospective cohort study 13 years DM-2

<table>
<thead>
<tr>
<th>A)</th>
<th>N=44601</th>
<th>Periodontitis Needing Surgical Treatment (YES or NOT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1) 5-PD=22299</td>
<td>1. Incidence of DM2= patients who have been diagnosed with ICD-9-CM codes 250 at least two times and concomitantly received antidiabetes medications.</td>
<td></td>
</tr>
<tr>
<td>a2) M-PD=2302</td>
<td>2. Incidence of DM2 was 1.24-fold higher in the periodontitis cohort than in the control cohort, with an adjusted hazard ratio of 1.19 (95% confidence interval = 1.10 to 1.29); The elevated risk disappeared after being followed up for 6 years.</td>
<td></td>
</tr>
<tr>
<td>B) age>40 yrs, mean 53.0 yrs C) 5.47 ± 3.54 years</td>
<td>Diabetes Compared Between Periodontitis Cohorts With and Without Surgical Treatment:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IRR=1.24 (1.18 to 1.30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• aHR=1.19 (1.10 to 1.29)</td>
<td></td>
</tr>
</tbody>
</table>

COMMENTS: diagnosis according to ICD-9 codes. Comparison is among difference type of periodontitis cohorts (no periodontally healthy controls)

Chiu et al 2015 Taiwan Cohort

<table>
<thead>
<tr>
<th>A)</th>
<th>N= 5,885</th>
<th>The cumulative incidence rates of hyperglycemia show that PD with CPI > 3 led to a dramatic increase in the risk of</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1) 1341</td>
<td>- CPI = CPI ≥3</td>
<td>• aHR of incident hyperglycemia (including diabetes)= 1.33 (95 % CI 1.09–1.63)</td>
</tr>
<tr>
<td>b1) 4033</td>
<td>- PD= CPI ≥3</td>
<td>Periodontal disease increases the risk (33%) of hyperglycemia</td>
</tr>
<tr>
<td>B) 35–44 yrs C) 5 yrs</td>
<td>FPG</td>
<td>• Demographic features</td>
</tr>
<tr>
<td></td>
<td>8 hr FBG</td>
<td>• Life style (betel quid chewing, smoking, and drinking),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Personal, and family disease history (DM2, hypertension,</td>
</tr>
<tr>
<td>Incident hyperglycemia compared with CPI <3</td>
<td>Cardiovascular and cerebrovascular disease, hyperlipidemia, and stroke</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Not generalizable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Anthropometric measurements: tape measure, and weight scales.
- Waist size
- BP
- Frequency of the dietary pattern classified into 5 levels: never or seldom, 1–2, 3–4, 5–6, and more than 7 times/week over the past 6 months
- TG
- TC
- HDL

COMMENTS: calibrated examiners. No HR for diabetes only presented.
Appendix. Tab. S4 NOS scale for quality rating of Cohort Studies

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Representativeness of the exposed cohort (Max 1 Star)</th>
<th>Selection of non-exposed cohort (Max 1 Star)</th>
<th>Ascertainment of exposure (Max 1 Star)</th>
<th>Demonstration that outcome was not present at start of study (Max 1 Star)</th>
<th>Comparability of cohorts on the basis of the design or analysis (Max 2 Stars)</th>
<th>Study controls for age (= most important factor)</th>
<th>Study controls for smoking (=additional important factor)</th>
<th>Assessment of outcome (Max 1 Star)</th>
<th>Was follow-up long enough for outcomes to occur (Max 1 Star)</th>
<th>Adequacy of follow-up of cohorts (ensuring losses are not related to exposure or outcome) (Max 1 Star)</th>
<th>TOTAL OF STAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saito et al. 2004</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Demmer 2008</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Ide et al. 2011</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Morita 2012</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Lin et al. 2014</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Chiu et al. 2015</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>
Discussion

Summary of the evidence

- The available evidence suggests that:
- Subjects affected by periodontal disease and not affected by diabetes are associated to higher level of HB1Ac, fasting blood glucose or pre-diabetes/diabetes prevalence. In particular, these subjects show a statistically significant increase of 0.29 % of Hb1AC (0.20-0.37 %, 95% C.I.).
- Subjects affected by periodontal disease show a 29% significant higher risk (adjusted hazard ratio 1.29 95% CI 1.11-1.46) of developing incident diabetes when affected by severe periodontitis compared to periodontal healthy subjects.

Limitations

Most studies suffered of intrinsic limitations that render the overall applicability of the results. Samples were sometimes limited and not generalizable. Most importantly, some of the evidence was indirectly drawn from manuscripts which primary intention was not to assess the effect of periodontal disease on glycaemic control. Heterogeneity in terms of adjustment was important and, in multifactorial pathologies such as the ones we are dealing with, it might have an impact. Another limitation is that only article in English were searched and publication bias cannot be excluded.

Conclusions

Periodontal disease has a negative influence on glycaemic control of people with not known diabetes; in particular subjects affected by severe periodontitis are characterized by higher level of HB1Ac, fasting blood glucose and present a 29 % higher risk of developing diabetes, respect those people with healthy periodontium.
References

Conflict of Interest and Sources of Funding Statement

The study was partly funded by the Italian Ministry Health and the Tuscan Region (Grant # GR-2009-1592229 “Periodontal disease as emergent systemic pathology: development of a new clinical unit for patient global health care”) and partly self-supported by the Unit of Dentistry and Oral Surgery of the Department of Surgical and Medical Pathology of the University of Pisa. Prof. Graziani has previously received a research grant from Straumann AG despite not related to this article. The authors have stated explicitly that there are no conflicts of interest in connection with this article.